Tumorbedingte Fatigue Multifaktorielle Problematik und Therapieansätze

J. U. Rüffer
Deutsche Fatigue Gesellschaft (DFaG)
Köln

FATIGUE - Auswirkungen -

Aktivitäten

Soziales Umfeld

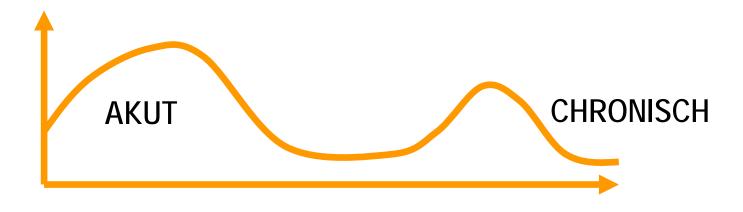
Karriere

Zufriedenheit

FATIGUE - Ursachen -

Erkrankung

Therapie

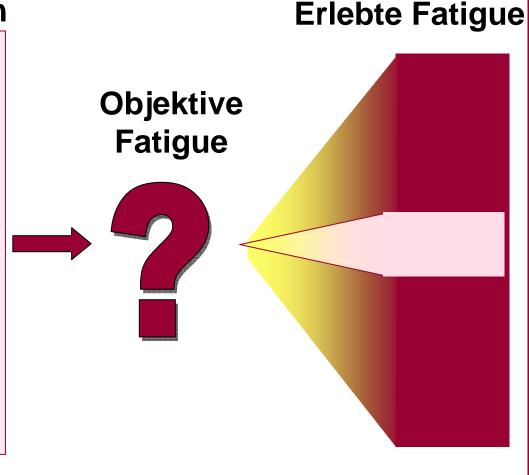

Persönlichkeit

Coping

Prävalenz

- Eine der häufigsten Nebenwirkungen der Tumortherapie
- ca. 70-80% aller Tumorpatienten, die Chemo- oder Strahlentherapie bekommen
- Prävalenzraten: 59% 96%
 (Mesa 2006, Rao 2004, Richardson 1995)

Fatigueformen


Therapie

Follow-up

FATIGUEMODELL

Auslösende Faktoren

- Tumor
- Therapie
- Anämie
- Komorbiditäten
- immunol.Prozesse (?)
- Depression (?)
- Gest. Schlafmuster
- KH-Verarbeitung

Intervention

Fatigue und Anämie

Anämie häufigster Grund einer akuten Fatigue

Korrektur der Anämie ist effektiv

- LQ
- Fatigue
- Transfusionsbedürftigkeit

Existenz verschiedener Guidelines, die eine patientengerechte und kostenbewußte Anwendung der verfügbaren Methoden ermöglichen

Früher Behandlungsbeginn einer milden Anämie ist dem späten Beginn (Hb < 9) hinsichtlich LQ, Produktivität und Hb überlegen Straus DJ et al. Quality-of-life and health benefits of early treatment of mild anemia: a randomized trial of epoetin alfa in patients receiving chemotherapy for hematologic malignancies. Cancer 2006 Oct;107(8):1909-17.

Fatigue und Immunologische Faktoren

71 Patienten mit hämatologischen TU nach Therapie

Korrelation von Fatigue mit SD-function, IL-1alpha, IL-1 soluble receptor, IL-6, CRP, Neopterin, Depression, körperlicher Fitness.

Korrelation von Fatigue nur mit Depression + körperliche Fitness

Dimeo F, Schmittel A, Fietz T, et al Physical performance, depression, immune status and fatigue in patients with hematological malignancies after treatment. Ann Oncol 2004 Aug;15(8):1237-42.

Fatigue und LQ

86 Langzeitüberlebende Kinder im Mittel 7,8 Jahre nach Therapie

Korrelation von demografischen und medizinischen Faktoren mit HRQoL

Korrelation von physical und psychosocial Functioning nur mit Fatigue

Meeske KA, Patel SK, Palmer SN: Factors associated with health-related quality of life in pediatric cancer survivors. Pediatr Blood Cancer 2006 Jun;():.

Fatigue und LQ

Skalenvergleiche QoL (Kontrollen versus Patienten)

	Hodgkin n = 818	Kontrolle n = 935	p-Werte
Kognitive Funktion	79	84	< 0,001
Emotionale Funktion	60	62	0,03
Körperliche Funktion	87	94	< 0,001
Rollenfunktion	86	95	< 0,001
Sexuelle Funktion	71	78	< 0,001
Soziale Funktion	74	91	< 0,001
Globale Lebensqualit	ät 67	78	< 0,001
Fatigue (QLQ C30)	36	30	< 0,001

Fatigue und LQ

Fatigue-Skalenwerte von Patienten im Vergleich mit Kontrollgruppe

Fatigue-Skalen	Hodgkin n = 818	Kontrolle n = 935	p-Werte
Fatigue - QLQ C30	36,5	30,0	< 0,001
General Fatigue (GF)	37,6	30,9	< 0,001
Physical Fatigue (PF)	32,6	25,0	< 0,001
Reduced Aktivität (RA)	28,0	21,4	< 0,001
Reduced Motivation	19,8	16,9	< 0,001
Mental Fatigue (MF)	26,6	21,8	< 0,001

Fatigue und Depression

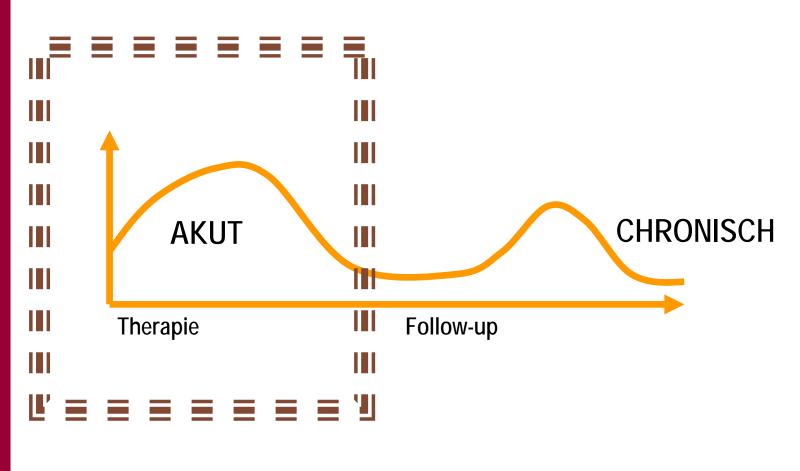
94 Brustkrebspatientinnen

Mind. 4 Zyklen Chemotherapie

20 mg Serotonin-RH Paroxetin

Placebo

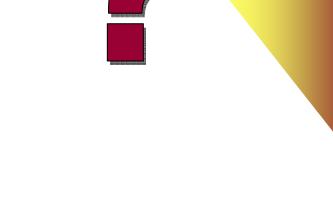
3 Fatigue-Messinstrumente und 2 Depressionsskalen


Paroxetin mindert signifikant die Depression, aber nicht Fatigue Serotoninstoffwechsel nicht primäre Ursache von Fatigue

Roscoe JA, Morrow GR, Hickok JT, et al. Effect of paroxetine Hydrochloride on fatigue and depression in breast cancer patients receiving chemotherapy. Breast Cancer Res Treat 2005 Feb;89(3):243-9.

Fatigue und Prognose

- Wie beeinflusst die tumorbedingte Erschöpfung die Prognose der Grunderkrankung?
- Welche Prognose hat die tumorbedingte Erschöpfung?


Fatigue und Prognose

FATIGUEMODELL

Auslösende Faktoren

- Tumor
- Therapie
- Anämie
- Komorbiditäten
- immunol.
- Prozesse (?)
- Depression (?)
- Gest. Schlaf-
- muster
- KH-Verarbeitung

Objektive

Fatigue

Intervention

PROGNOSE

Wie beeinflusst die tumorbedingte Erschöpfung die Prognose der Grunderkrankung?

Als Symptom von


- Anämie
- Alter
- Komorbiditäten

Prevalence of co-morbidity and its relationship to treatment among unselected patients with Hodgkin's disease and non-Hodgkin's lymphoma, 1993-1996.

_	194 pts HD	904 pts NHL
co-morbid condition		
< 60 years	13%	20%
> 60 years	56%	55% (43/61)
comorbidities		
cardiovascular disease	18%	19%
hypertension	13%	14%
pulmonary disease (COPD)	13%	8%
diabetes mellitus	10%	9%

van Spronsen DJ et al Department of Internal Medicine, Eindhoven, The Netherlands.

Randomized, Placebo-Controlled Trial of Epoetin Beta in Hematologic Malignancies

Österborg, A et al. for the Epoetin Beta Hematology Study Group: JCO, 10, 2002: 2486-2494 O'Shaughnessy JA: Effects of epoetin alfa on cognitive function, mood, asthenia, and quality of life in women with breast cancer undergoing adjuvant chemotherapy.

Clin Breast Cancer Dec 2002; 3 Suppl 3():S116-20

PROGNOSE

→ Wie beeinflusst die tumorbedingte Erschöpfung die Prognose der Grunderkrankung?

Anämie Compliance

Alter → FATIGUE → KPS

Komorbiditäten LQ

DOSISREDUKTION

PROGNOSE

Wie beeinflusst die tumorbedingte Erschöpfung die Prognose der Grunderkrankung?

Anämie → Transf./Epo Compliance?

Alter Ø → KPS ↑

Komorb. → präth. LQ ↑

Optimierung

?DOSISREDUKTION?

Fatigue und Prognose

1588 Brustkrebspat. im Mittel 12,9 Jahre nach Therapie

Korrelation von QoL, Fatigue, Ängstichkeit und Depression mit Überleben und rezidivfreiem Überleben bei Korrektur für bekannte klinische und histopath. RF

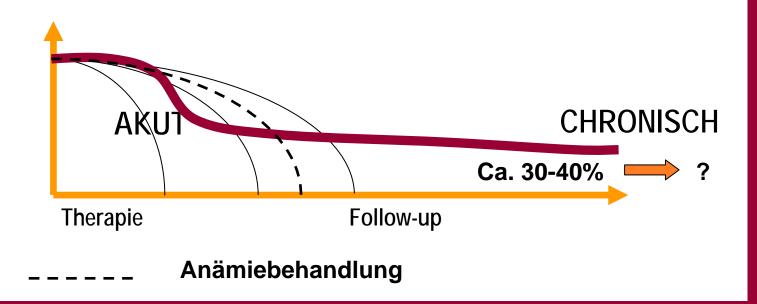
Gute EF (EORTC), niedrige Fatigue positiv mit längerem Überleben, auch rezidivfreiem, assoziiert

Groenvold M, Petersen MA, Idler E, et al Psychological distress and fatigue predicted recurrence and survival in primary breast cancer patients. Breast Cancer Res Treat 2007 Jan;():.

Prognostische Faktoren für Überleben bei Patienten in einer Palliativeinheit

- Primäre Tumorart
- Metastasenlokalisation
- Karnofsky performance score (KPS)
- Fatigue
- Appetit
- Luftnot

Chow E et al: Int J Radiat Oncol Biol Phys 2002 Aug 1;53(5):1291-302


PROGNOSE

Wie beeinflusst die tumorbedingte Erschöpfung die Prognose der Grunderkrankung?

Welche Prognose hat die tumorbedingte Erschöpfung?

Welche Prognose hat die tumorbedingte Erschöpfung?

Beispiel M. Hodgkin

Therapie der chronischen Fatigue

 Patient-controlled methylphenidate for the management of fatigue in patients with advanced cancer: a preliminary report.

Bruera E, Driver L, Barnes EA et al J Clin Oncol 2003 Dec;21(23):4439-43.

A phase II study of methylphenidate for the treatment of fatigue.

Hanna A, Sledge G, Mayer ML Support Care Cancer 2005

- Homöopathischer Ansatz zur Symptomkontrolle (100 Pts, 39 with metastases)
 Thompson EA, Reilly D: Palliat Med 2002 May;16(3):227-33
 - Fatigue
 - Hitzewellen
 - Schmerz
- L-carnitine in der Behandlung von Fatigue und Depression von Tumorpatienten mit Carnitinmangel: Eine vorläufige Analyse.

Cruciani RA, Dvorkin E, Homel P, et al N Ann N Y Acad Sci. 2004 Nov;1033:168-76.

Akupunktur bei postchemotherapeutischer Fatigue: Phase II Studie

Vickers AJ, Straus DJ, Fearon B,.J Clin Oncol 2004 May;22(9):1731-5.

Stimulantientherapie

Klinische Pharmakologie und Pharmakodynamik METHYLPHENIDAT

- Phenylalanin- Grundstruktur, wie sie bei Stimulanzien vom Amphetamintyp gewöhnlich angetroffen wird.
- Verbesserung des Katecholaminstoffwechsels
 - durch Hemmung der Wiederaufnahme von Dopamin und/oder Norepinephrin in das präsynaptische Neuron
 - und Erhöhung der Ausschüttung dieser Substanzen in den synaptischen Spalt

(Wilens und Biederman 1992)

METHYLPHENIDAT

Wirkungseintritt schnell (nach 30 - 60 Min.), zuverlässig

Wirkungsdauer kurz

Halbwertzeit 1,5 - 3 Std.

Max. Plasmakonzentration 1 - 2 Std.

Einnahmehäufigkeit 2x täglich ggf. häufiger bis zu alle 3 Std.

Metabolismus Abbau in der Leber

Tagesdosis max. 60 mg

BTM-Rezept ja

Klinische Erfahrung/ weltweit sehr groß, auch in der BRD gut

Dokumentation/Studien dokumentiert

Abhängigkeitspotential vorhanden, sehr gering

Nebenwirkungen (spezifische) leichte Erhöhung der Leberwerte

MP-Studie Start 2006

- Placebokontrollierte Phase II/III Studie
- Multizentrische Studie
- Evaluierungsinstrument MFI
- Dosierung Start mit 20 mg eskalierend
- Therapiedauer 3 Wochen
 - 3 Wochen Nachbeobachtung

Fatigue offene Fragen

- Anämie Fatigue Einstiegs-Hb
- Anämie Einstiegs-Hb chronische Fatigue
- Prognose Fatigue Dosisreduktion
- Hohe Prävalenz geringe Studienrekrutierung
- Kommunikation Ausprägung der Fatigue